CHEMICAL COMPOSITION AND ANTIMICROBIAL ACTIVITY OF ESSENTIAL OIL FROM Nepeta cadmea

A. Celik, N. Mercan, I. Arslan, and H. Davran

UDC 547.913

The Genus *Nepeta* L. (Lamiaceae) is represented by 34 species in Turkey, including eighteen endemic species [1, 2]. *Nepeta cadmea* Boiss. is an endemic species with limited distribution and included in the lower risk and least concern category in the red data book of Turkey [3]. Here we report on the antimicrobial activity of the essential oils from *N. cadmea* because very little information is available on this endemic species. Table 1 shows the percentages of the main components present in the essential oils isolated from *N. cadmea* collected in June from Honaz Mountain.

The yields of essential oil from *N. cadmea* on a dry weight basis was 2.1% (v/w). Thirteen components in *N. cadmea* (97.91%) were identified. The components are listed in order of their elution time on the HP 1 MS column. Among the compounds, nepetalactone (81.6%), caryophyllene (3.71%), and germacrene D (3.25%) were identified as the major components in the essential oil of *N. cadmea*.

The antimicrobial activity of the essential oil measured by the disc diffusion method is given in Table 2. The essential oil isolated from *N. cadmea* showed antimicrobial activity, but differences in microbial susceptibility were observed.

Our findings indicate that the essential oil isolated from *N. cadmea* has antimicrobial activity and can be used to control microorganisms since this has been used in folk medicine for decades. It will be worth-while to investigate the individual components in antibacterial and antifungal assays.

TABLE 1. Percentage Composition of the Essential Oil Isolated from N. cadmea (% of Total Ion Current)

Components	Rt ^a	%	Components	Rt ^a	%	
Nepetalactone	12.70	81.6	Calamene	8.30	1.10	
Caryophyllene	8.36	3.71	Δ -Cadinene	8.40	0.59	
Germacrene D	5.30	3.25	Terpinen-4 ol	4.03	0.39	
Sabinene	8.04	1.96	1,8-Cineol	7.70	0.37	
Caryophyllene oxide	5.70	1.91	δ -Muurolene	8.40	0.35	
Linallol	8.82	1.36	δ -Terpinene	7.03	0.18	
Carvacrol	6.17	1.13	Total	98.95	97.91	

^aRetention time (as minutes).

Department of Biology, Faculty of Science and Art, Pamukkale University, Denizli, Turkey, fax (90258) 212 55 46, e-mail: iarslan@pau.edu.tr. Published in Khimiya Prirodnykh Soedinenii, No. 1, p. 92, January-February, 2008. Original article submitted November 15, 2006.

TABLE 2. Antimicrobial Activity of the Essential Oil of N. cadmea Using the Disc Diffusion Method

Microorganisms	DD^{a}	Ac ^b	Pl ^b	Microorganisms	DD^{a}	Ac ^b	Pl ^b
Bacillus subtilis ATCC 6633	6±0	N.t. ^d	12	Escherichia coli ATCC 218	4±0	19	17
Staphylacoccus aureus ATCC 25923	6±0	N.a.	30	Klebsiella pneumoniae ATCC 27736	N.a.c	N.a.	N.t.
Staphylacoccus aureus ATCC 29213	4±0	N.t.	31	Salmonella enteritidis RSKK 171	2±0	N.a.	N.t.
Cowan liyofilii	10±0	N.a.	29	Yersinia enterecolitica ATCC 1501	N.a.	20	18
Morganella morgani	7.5 ± 0	M.t.	29	E. coli ATCC 25922	2±0	18	18
Proteus vulgaris RSKK 96026	4 ± 0	N.t.	29	Micrococcus luteus MRLL B-4375	6±0	28	31
Bacillus cereus RSKK863	7.5 ± 0	N.t.	22				

^aDD, agar disc diffusion method; ^bAc, ampicillin; ^cN.a.: not active; ^dN.t.: not tested.

REFERENCES

- 1. P. H. Davis, Flora of Turkey and East Aegean Island, Edinburgh University Press, Edinburgh, 4, 1972, p. 382.
- 2. K. H. C. Baser, B. Demirci, F. Demirci, E. Bedir, P. Weyerstahl, H. Marschall, H. Duman, Z. Aytac, and M. T. Hamann, *Planta Med.*, **66**, 674 (2000).
- 3. T. Ekim, M. Koyuncu, M. Vural, H. Duman, Z. Aytac, and N. Adiguzel, *Red Data Book of Turkish Plants*, Bariscan Offset, Ankara, 2000, p. 246.